|  客服热线:400-151-3383
  • 交易
  • 供求
  • 行情
  • 企业
  • 资讯
类别索引
【脱硝】SCR烟气脱硝系统运行全过程数据分析-行情中心-东方循环网
当前位置:
行情中心> 行情新闻 > 【脱硝】SCR烟气脱硝系统运行全过程数据分析

【脱硝】SCR烟气脱硝系统运行全过程数据分析

发布时间:2018-12-21 10:02:54

据的汇总分析,指出不同燃烧方式以及运行控制方式下,脱硝系统出口氨逃逸存在差异,导致空气预热器等下游设备硫酸氢铵(ABS)堵塞情况存在明显差异,说明从锅炉燃烧、脱硝设备、烟气流动与混合等方面进行全过程优化管理的必要性及重要性。针对脱硝系统超低排放改造后集中出现的空气预热器ABS堵塞等次生问题,建议采用全过程管理理念,从源头控制氨逃逸,提高脱硝系统运行水平。

机组经过超低排放改造后,普遍出现空气预热器(空预器)硫酸氢铵(ABS)堵塞和电除尘设备飞灰黏附,严重者甚至出现机组带负荷能力受限、NOx及烟尘排放难以达标等问题,且ABS具有一定的腐蚀性会造成设备腐蚀,影响机组安全运行。

本文通过汇总分析国内多台机组脱硝运行情况,对影响选择性催化还原(SCR烟气脱硝系统性能的主要因素,如脱硝还原剂与烟气的混合程度及分布、氨氮摩尔比、NOx质量浓度、烟气温度等进行分析,结合实际案例提出相应优化措施,为解决机组超低排放改造后脱硝系统运行次生问题提供参考。

1脱硝系统全过程分析

1.1NOx质量浓度分布

锅炉不同燃烧方式下(切圆、旋流、拱式燃烧等),省煤器出口NOx质量浓度及分布差异较大,为此采用统计学方法中的四分位距(IQR)描述其分布情形。

对于切圆燃烧锅炉,SCR脱硝系统入口NOx质量浓度分布较为集中,其IQR8~41mg/m3之间;对于旋流燃烧锅炉,NOx质量浓度分布相对集中,IQR27~79mg/m3之间,部分机组达到119mg/m3;对于拱式燃烧锅炉,NOx质量浓度分布比较分散,IQR最小为84mg/m3,最大达到387mg/m3。不同锅炉燃烧方式下的NOx质量浓度分布如图1所示。NOx质量浓度四分位距和均值之比(IQR/Mean)与NOx质量浓度分布相对标准偏差(CV)存在相关关系,具体如图2所示。图中O表示切圆燃烧,H表示旋流燃烧,W表示拱式燃烧

image.png 

1不同燃烧方式下SCR脱硝系统入口NOx质量浓度分布

image.png 

2NOx质量浓度分布偏差分析

1.2NOx平衡质量浓度

NOx平衡质量浓度应结合锅炉燃烧及脱硝装置综合确定,以防止低氮运行方式下出现锅炉高温腐蚀、可燃物含量高、CO质量浓度上升等问题。表1为某630MW机组不同工况运行参数。由表1可以看出:随着SCR脱硝系统入口NOx质量浓度降低,锅炉效率也随之降低,这主要是由于低氧量运行方式下锅炉未燃碳及CO热损失升高;增加风量后,上述热损失明显降低,锅炉效率增加,但SCR脱硝系统入口NOx质量浓度也随之升高,导致脱硝喷氨量增加,同时氨逃逸量也随之增加(图3);当脱硝系统氨逃逸量超出一定限值时,会造成空预器设备堵塞,此时空预器差压会快速上升,导致风机电耗增加。

1630MW机组不同工况运行参数

image.png 

3不同NOx质量浓度下锅炉效率、喷氨量及氨逃逸量关系

image.png 

NOx平衡质量浓度可按照以下步骤确定:

1)评估经喷氨优化调整后的脱硝装置潜能,据此可计算不同NOx质量浓度对应的氨逃逸量;

2)结合烟气条件,评估不同氨逃逸量对空预器堵塞的影响,定性评价空预器阻力变化情况;

3)将锅炉效率及风机电耗转换为煤耗数据;

4)按氨耗及煤耗之和最省原则确定NOx平衡质量浓度。

NOx平衡质量浓度确定过程中,并非所有因素均能转化为经济效益进行比对,在具体项目中应根据实际情况确定各项因素的权重,对关键因素有所侧重。

1.3空预器ABS堵塞

SCR脱硝系统运行产生的氨逃逸量与SO3质量浓度增加是造成下游空预器ABS堵塞、引风机电耗增加的主要因素。ABS沉积程度可由式(1)评估。

image.png 

42层催化剂条件下,脱硝装置运行3个月内空预器烟气侧阻力情况,其与氨逃逸量及煤中折算含硫量相关性明显。由图4可见,空预器阻力高值多分布于高硫煤、高氨逃逸量区域。燃用低硫煤种时,空预器阻力较易控制,氨逃逸限值可适当放宽,而高硫煤种空预器阻力上升明显,需严格控制氨逃逸量。

image.png 

4空预器阻力与氨逃逸量及含硫量关系

5为不同催化剂层数下空预器烟气侧阻力情况(运行3个月内)。针对不同的排放标准分别采用2层或3层催化剂时,空预器烟气侧阻力均值约为1400Pa;但高NOx质量浓度机组超低排放布置4层催化剂时,空预器阻力增加明显,统计均值达到1740Pa。这一方面是由于高脱硝效率下氨逃逸量控制难度加大,另一方面4层催化剂下SO2/SO3转化率也相应升高,ρ(NH3)×ρ(SO3)增大导致空预器ABS堵塞情况相对严重。

image.png 

5空预器阻力与催化剂层数关系

6为不同燃烧方式下空预器烟气侧阻力情况(运行3个月内)。由图6可见:旋流与切圆燃烧锅炉相比,前者空预器差压平均偏高约180Pa;旋流燃烧锅炉SCR脱硝系统入口NOx质量浓度分布均匀性较差,且不同工况分布趋势不同,使得喷氨格栅适应性较差,导致局部氨逃逸量峰值增加、空预器阻力升高;对于拱式燃烧锅炉,上述影响尤甚,且在燃用无烟煤/贫煤时NOx质量浓度偏高,高脱硝效率导致氨逃逸量较大,使得空预器阻力明显偏高。通过实例分析可以看出,降低SCR脱硝系统入口NOx质量浓度,同时提高其分布均匀性,可以减少氨逃逸量,是预防空预器ABS堵塞的有效手段。

image.png 

6空预器烟气侧差压与锅炉燃烧方式的关系

1.4氨氮摩尔比分布

NOx质量浓度分布偏差越大的机组,空预器发生ABS堵塞的概率越大。根据相关研究,当脱硝效率要求达到93%时,即使氨氮摩尔比均匀性达到2%,氨逃逸量也仅能控制在2µL/L;如果脱硝效率降至85%,当氨氮摩尔比均匀性系数分别为2%8%时,氨逃逸量均小于1µL/L,且后者仅偏高0.5µL/L。可见,脱硝效率低时氨逃逸量更容易控制。

正常运行中,对喷氨格栅进行定期优化调整是提高氨氮摩尔比分布均匀性的常用手段。对于本文统计的不同燃烧方式的机组,脱硝喷氨优化效果不同,喷氨优化前后氨逃逸量峰值如图7所示。

image.png 

7不同燃烧方式下锅炉喷氨优化前后氨逃逸量峰值

由图7可见:切圆燃烧锅炉脱硝喷氨优化调整后,局部氨逃逸量峰值均可控制到3µL/L以下;旋流燃烧及仓储制粉机组局部氨逃逸量峰值可控制到7µL/L以下;而拱式燃烧锅炉氨逃逸量最难控制,案例中局部峰值可达21.3µL/L。这也是不同燃烧方式下锅炉空预器阻力存在差异的主要原因。

常见的氨喷射装置(AIG)主要有格栅式、混合型及涡流型3类,这3类氨喷射系统的优势和适应范围各异。执行NOx超低排放标准后,SCR脱硝系统脱硝效率进一步提高,国内部分采用混合型及涡流型AIG的脱硝系统无法满足相应的氨氮摩尔比分布均匀性的要求。目前,已有电厂对脱硝系统AIG进行了优化改造,可明显改善氨氮摩尔比分布均匀性,但对拱式燃烧、部分旋流燃烧锅炉,还需采取提高省煤器来流烟气分布均匀性的措施。

 



400-151-3383
7x24小时 全年无休